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Synchronous motions of almost conservative objects with one degree of freedom interacting
by way of constraints of the first and second kind 9] are considered within the framework
of the general problem of dynamic systems synchronization [1]. It is essumed that the ele-
ments of the constraints of the second kind do not have degrees of freedom of their own and
that the oscillations of the constraints of the first kind (i.e. of the supporting system) are
accompanied by marked energy dissipation.

Periodic solutions of the rotation type are found for a system with a multidimensional
rapidly rotating phase of sufficiently general form. The necessary and sufficient conditions
for their stability are determined. The representability of these conditions in terms of the
average energy characteristics of the motion under consideration is discussed in relation
to the synchronization problem. It is shown that one of the formulations of the integral sta-
bility criterion is valid in the presence of gyroscopic forces in the supporting system.

The first group of stability conditions for synchronous states in an almost conservative
system of general form and the resulting formulations of the integral criterion are obtained
in [2]. A second group of stability conditions for a nonselfcontained system without suppor-
ting constraints is derived in [3]. However, in view of the applicability of the integral sta-
bility criterion, these conditions are trivial for most of the practically interesting problems
subsumed by the case considered in [3].

1. The equations of motion. The motion of a system of n dynamic objects inter-
acting by way of weak constraints of the first and second kind [2] will be described by a
set of n pairs of *“characteristic’” [3] canonical variable objects g, and p, (i = 1,00, n) and
by the vector column % consisting of the m generalized coordinates z,..., 5, required to
describe the configuration of the supporting system.

The equations of motion in synchronization problems with constraints of the first kind
can be conveniently constructed in the form of Rauss equations. The general Rauss kinetic
potential of the system can be written as

Lp=R—T =— DH +ulo+pt..., Ly=AL+LP+L® D
il

Here > 0 is the basic small parameter of the problem characterizing the weakness of
interactions between the objects, while the quantity

Hy=1sa;(q:;) p* + i (q,) (1.2)
represents the ‘““characteristic energy” (partial Hamiltonian [2]) of the i-th object). The re-

maining quantities appearing in (1.1) are the following characteristics of the system compu-
ted to within terms of order u2:
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n
) ’ . ’ z
RAL = H[Zbi (1. g )up—e (qa, .- ,qn)u](u = ;) (1.3)
i=al
is the additional kinetic potential of the objects occasioned by small oscillations of the
supporting system (the dot denotes differentiation with respect to time; the prime denotes
a transposed vector, a vector row in the present instance),

ul® = p (o ('Y Mu' —1/3u’Cu) (1.4)
is the kinetic potential of the supporting system, and finally
n
pL® = P'[ 2 i (g .. 5 q,) P — T (g, . . MI,,)] (1.8)
i, j=x1

is the kinetic potential of the elements of the constraints of the second kind [2] (it is assu-
med that these constraints do not have degrees of freedom of their own).

In accordance with general notions conceming the weakness of interactions in synchroni-
zation problems [1 and 2], we consider the displacements of the supporting system to be
small quantities of order . The remaining symbols are those adopted in [2ﬁ.

We make the following assumptions about the nonpotential forces corresponding to the
generalized coordinates adopted above. We assume that the forces associated with the char-
acteristic coordinates of the objects are small and partial, i.e. that

Qi‘=in(qi, .pi)_*_pz.._ (i=1,...,n) (1.6)

The nonpotential forces along the coordinates of the supporting system, which (by vir-
tue of our initial assumptions about the propenies of the supporting system [ 2]} are propor
tional to the displacement velocities ’

Q(z, z)=—DBu +p... . (Q(z,0)=0) (1.7)
to within terms of order i1, are assumed to be small.

In (1.7) the symbol B {just as M and C in (1.4)) denotes some sqaare m X m matrix with

constant components.
We also assume that the inequality

() Q(z,7) <0 (1.8)
is always fulfilled, so that the symmetric part B of the matrix B is associated with the
positive quadratic form

Y2 (w) Bouw >0 (1.9)

which can be interpreted as a dissipation function.
Constructing the equations of motion of the system in the Ruass form, we obtain

. 0H; d @)
% op, = Moy AL LT Rt (i=1,...,n)
. O0H 3
Pt gt = b Q@ p) +gp AL L)
Mu" + Bu' + C“=_(%%—T;E)AL+“--- (1.10)

For p = 0 system (1.10) yields n independent conservative second-order systems descri-
bing the motion of isolated objects without nonpotential forces. Let each of these subsys-
tems in some domain G, of the partial phase plane (cylinder) admit of a 27/w, -periodic lib-
rational (rotational) solution of the form

9 = 2, (Pp @), Py =Y, (9 ©) (1.11)
where @y = ®;f | ¢; is the characteristic rapidly rotating phase and w, is the circular
frequency dependent on the initial conditions. Then, converting to the new ‘‘phase~frequency”
varisbles @;, w,(i = 1,..., n) in Egs. (1.10), we finally arrive at the following specific sys-
tem 9z oLy

. i
@ = ooy (Ga @it o) F B
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. i axy 2 2 R
o = b ey (5%@%'*‘5%)4‘?‘“--- (=1,...,n)
Mu"+Bu'+Cu=—-(%-~a%-.-—-é%>AL—{—p.
1 dh;
b (@) = 5T = 0 (1), hi(@) = Hilai ) (112

Here k,(w,) is the slope of the skeletal curve of the i-th isolated object.

The purpose of the .discussion below is to obtain the conditions of existence and stab-
ility of the synchronous solutions of system (1.12) or (which is the same thing) of system
(1.10) closely related to certain synchronous solutions from family (1.11).

2. Synchronous solutions in a system with multidimensional rap-
id rotations. The nonselfcontained case. Simplifying the problem somewhat,
let us consider the interaction of substantially nonlinear almost conservative objects des-
cribed by the following system with a multidimensional rapidly rotating phase:

P =0+ X (P en s Py O1yee ., On, V, VE) 2L
@ =Y (@, .. Py 01,0, v, V) R =100
V=Av+F(@,...,9, 01,..., O vt)+H... (2.1)

Here Vv and F are N-dimensional vectors, 4 is a quadratic N x N matrix with constant
components, the functions X,, ¥, (i = 1,..., nJ, F etc. are assumed to be analytic in a cer
tain domain G of the space of its arguments and 2r-periodic in each of the variables ¢,,...,
®n and in dimensionless time 7 = v ¢; v is the frequency of the external perturbation.

In some interval 0 <y <, system (2.1) admits of a synchronous solution of the fom

Q=71+ o+ p..., 0 = V; + P

v = v (1, 0y.., Cpy Viy Vipeeey V) -+ Boes (2.2)
which is analytic in the parameter u. This is 80 provided the quantity ay,e.., @, forms s
simple solution of the system
Vi=,..=V, =V
1 an
| R T ,vﬂ)sfzgg (Yydr=0 (i=1,...,n) (23
0
(Yz)': Yi(r'{"aly' .. ,T‘)Lan, Viy« e 1V V(O), T)

Here v(® is a solution of Eq.

v = Avy® "+" F (T + o) PR 1 + Ry Viy o ooy Yy 1:) (2.4)
This solution is 2mr-periodic in 7.

We assume here that Eq.

v =Av+ @) (2.5)
with any sufficiently smooth 21 /v-periodic function ® (¢} in its right-hand side admits of a
Eu;liqu:)zni)d stable 2 77/v-periodic solution V() such that if max |%(t)‘ = O(1), then max |V,
¢ = »

Turning now to the matter of the stability of the synchronous solutions determined in ac-
cordance with (2.2), (2.3) and (2.4), let us write out the equations in the variations of ini-
tial system (2.1) corresponding to these solutions,

n

8p, = duw; + p {]E [(g;‘f—;) o, + (-3-;%) 60);-] + (52 av} +pt...

X
o= {3 (20 + ()04 (0o ..



658 R.F. Nagaev and K.Sh. Khodzhaev

v-—A&v—{—Z( )écp +(am)6m,]+p (i=1,...,n) (2.6)

Here and below parentheses around the derivatives indicate that these are computed for
the generating solution obtained from (2.2) for it = 0. Eqs. (2.6) constitute a linear system
with 2m/v-periodic coefficients whose 2n characteristic (*‘critical’’) indices vanish for
p = 0. The stability of synchronous solutions (2.2) is ultimately determined by the signs of
the real parts of the critical indices.

Limiting ourselves for this reason to the determination of the critical characteristic
indices, we exclude from system (2.6) the variations of the supporting system coordinates.
To do this we attempt to find them in the form

n

3v = D [E:i (¢, 1) 69, + m, (¢, 1) Sey] (2.7)
4=1

where f and 9, G =-1,..., n) are 27 /v-periodic vector functions of time

Sub.tnuting (2 7) into the latter Eq. of system (2.6) and making use of expressions for
the derivatives 6(p,‘ and 60){ s.in accordance with its first 2n equatxons, we obtain a sys-
tem of nonlinear equations for determining the functions &, and 7, which is the matrix ana-
logue of the Ricatti eqnauon. A 2m /v-periodic solution 01 these equations can be sought
in the form of series in powers of a small parameter

E=E0+pE0 W, =@ @ . (i=1,.,n) (28)
The functions £,(%) and 1]'(°)are here defined as the 27 /v-periodic solutions of Eqs.

B — AB® 4 (6F) 7,0 = An©@ + ( )__Ei(o) 2.9
Com paring (2.9) with (2.4), we have "
E© =?T(.O)’ 7,0 = ";"v«") +84  (i=1,...,n) (2.10)
Here the 27 /v-periodic \tector functions ¢ ;atisfy the Eqgs.
Ci=AL— av(°> (2.11)

and are determined as follows. Converting to d1mensmnless time 7 in (2.4) and differentia-
ting partially with respect to the explicitly appearing frequency v, we obtain

d [av(® ) (av(") 1 o
’d?( v | =4\ % )‘"v‘" (2.12)
From this and from (2.11) we have
. v (1) .
g‘—'\?—a{‘—a—a—i— (l—i,...,ﬂ) (2.13)
On eliminating the variations of the supporting system coordinates in accordance with
(2.7), we arrive at a system of 2n equations in g(p and Sw,,
. 9 (X;) (Xy) 4 (2X (2.19)
39, =omi+pj2‘i{ o+ [T+ (5 G| d0) +p...

bmi.___po.jz{a(Yi)blp+[6(Yi)+(ayi _5]6&),}-1—{12-.- (i=1,...,n)

It is clear that the characteristic indices of system (2.14) (whose total number is 2n) are
equal to the critical characteristic indices of system (2.6). Let us make the standard sub-
stitution

o0p,=eMd, do,=eMY, (i=1,...,n)

The characteristic index (see [3] is represented in the form
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A= At/ + Aop + Agu's + pd (2.15)
The problem then reduc es to the determination of the condltlons of existence of a 27 /v~
periodic solution of the system

8¢ = ho— WA, - {— hab, + Z[a(‘m 8+ (a(xi) )"”]}_

=1

—Whhg®; 4-pt. ..
W = — A i — R+ Z[""Y" &+ (S + (F)%) v ]} —

j=1
— phAsp; +pt... G=1,...,n) (2.16)
The solution of system (2.16) will in turn be sought in series form,
§ = 'ﬂi(O) 4 p.‘/- \t}i(l) + p‘ﬁi(z) + p’/a ﬁi(-‘l) +pt...

1p \p o 4+ p,‘/l 1p W 4 p,‘\p @ 4 p,'/v\p 3 pﬁ
Here 0(%), (/J(k)(ls 0 1,...) are 27/v-periodic functions of time,
Begmmng the process of constructing the successive approximations, we readily obtain

‘O‘i(o) = ai, 'lpi(o) = U, 'ﬁi(l) = bi’ 'lp,l(l) = }"lai (ai, b{ = const) (2- 18)

From the condition of periodicity of the second approximation we arrive at a system for
determining the quantities a,,

(2.17)

n
9P; .
ZE(W;—-WGi;)a,:O (i=1,...,n) (2.19)
j=11\
The first approximations of the characteristic indices are thus the roots of Eq.
oP.
o, R A'lzbu =0 (2.20)
@

A periodic third approximation exists if and only if the quantities b; satisfy the system

2(30? A b”)b _7\,1{22,2a — 5‘_,[6’*%‘”’*

3—1 I j=1 L

e sonla) o (e 400

0
The second approximations of the characteristic indices can be detemined from the con-
dition of solvability of inhomogeneous system (2.21) and are of the form

R

Here the numbers a,‘(i = 1,..., n) form the solution of the system conjugate to system
(2.19),

n
aP;
Z (-—aa—:——' Alz 61’) aj* = O (i = 1, ee e, n) (2°23)
j=1
Here we assume that all the roots of Eq. (2.20) are simple and different from zero, and
that the corresponding eigenvectors ¢ and a* are such that the normalization condition

Daar =1 (2.24)
i=1

can be fulfilled.
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The synchronous state in the system is asymptotically stable if
M2 <0, Ay <O
for all the roots of Eq. (2.20).

3, The selfcontained case. Representability of the stability con-
ditions in terms of the functions P,, R,. Let us consider the case where there
is no external single-frequency perturbation and system (2.1) is selfcontained. Then, clear~
ly, the previously unknown frequency v of the synchronous state must be sought in series
form,

v = Vo + pvy R (3.1)

The synchronous solution of Egs. (2.1) has, as before, the form (2.2), although the ex~
plicit parameter v present in the generating approximation is replaced by V4. A precisely

similar substitution must be made in the equations for determining the parameters of gener-
ating solution (2.3). We note that the function P; in this case satisfies the relations
Pi(a; + a,..., a, + a,...) = Pya,,..., 0,...) (3.2)

where a is arbitrary. This implies that system (2.3) can generally be used to find only the
quantity v, and the differences between the generating phase shifts.

Investigation of the stability of the synchronous state differs in this case only in the
fact that relative to the first approximations of the critical characteristic indices, Eq. (2.20)
has a double zero root. Hence, relations (2.22) enable us to determine (see (2.21)) justn — 1
pairs of second approximations of the characteristic indices corresponding to the zero roots
of Eq. (2.20). As regards the zero roots, one of them corresponds to the exact zero charac-
teristic index of the whole system in variations (2.6), while the other corresponds to the non-
trivial index which decomposes into a series in whole powers of a small parameter. This in-
dex can be computed most readily to within quantities of order it in the following way.

As we know, the sum of characteristic indices of a system of equations with periodic
coefficients is equal to the trace of the coefficient matrix averaged over a period.

Com puting this quantity for system (2.14), we obtain

n n

2n
o) @ _ oR; |, 0Py 1 (¢ /9Y;
Zl(xr + A, )‘P-ZI[E—FW—*—HS (W)gid"]"f—ﬂa---
r== 1= 0
A‘r(l'”Zi}“'p"'-*‘}%rllj:p’/"” (r=1,...,n—1)
A'n(l) = 7"211!1 ‘]‘ P-z ey }"n@) =0 (3.3)

Here A, are the roots of Eq. (2.20).
This implies that the required characteristic index can be determined to within terms of
order i from the relation

n 2n
=3 [T+ 5+ o) (B tmyan] —
& - [9Ry , 9P | 1 i oY
B r§1 i%l [‘T‘: + a—"; + EE(S (Wl) i) dr] Zirur™ (3.4)

where a, and a,* are the eigenvectors of systems (2.19) and (2.23) normalized in accordance
with (2.24) and corresponding to the roots tA,,. We note, further, that by virtue of the or-
thogonality and normalization conditions

n
2 @, 05,F =0, (r,s=1,....,n) (3.5)
i=1
the matrices 4 = ||¢!’|| and A* = "a“‘" are mutually reciprocal. Hence, the quantity 2A ,,
(see (2.22)) (r= 1,..., n — 1) is the r-th diagonal element of the matrix
13

2
A Jom+ S+ —;~5 (722G (@) e 4 (3.6)



Synchronous motions in a system of objects 661

Since the similarity transformation does not alter the trace, it follows that

n 2%
aR aP 1 ( /9Y
b= 3 [+ 5+ 3w () () 47 ajnta® (@7
i, j=1 0
Thus, despite the fact that the expressions for the second approximations of the charac-
teristic indices are somewhat altered, the necessary and sufficient stability conditions re-
main unchanged.

Here we note that in the general case considered above investigation of stability is com-
licated by the necessity of double integration in accordance with relations (2.13) and
2.22). There is, however, an important special case where these integrations are easy to

carry out.

Let us suppose that in the non-selfcontained case the vector function F in the last Eq.

of system (2.1) can be written as a sum,

n
F=> Fi(Q ..., 00 (9=t (3.8)
=0
and that the functions Y, (i = 1,..., n) are linear in the coordinates of the supporting system,
Y‘f = Y‘E(O) (‘Pl, cies Pp, O, ..., Oy, '\’t) '+‘ Y{(l) ((Pl, veey P, @1,..., Oy, ‘Vt)v (3-9)

The oscillations of the supporting system can then be written in the form of the super-
position

n
VO =D vO @t v, v, vm) (2=0) (3.10)
i=0
The components V;(®’can be determined from Egs.
v = 4v;® L Fy (v 4 a, v, .. 0, V) (3.11)

Thus, the equations for determining the parameters of the generating solution can be
written as

n
= Py+P®O=0  (i=1,...,n) (3.12)
j=0
2% 1 2r
1 ¢ _ . \
Pij =ﬁ§ i vdr G=0,...,n, PO= —,,;,‘—S viav
0 0 ’
From (2.13) in this case we have
avi(o)
= (3.14)
b ov
so that
2n
L (Y \p. go = 9P -
ZNS (.5‘,_):;”1':_W G=1,...,n) (3.15)
0
Finally, the second group of stability conditions can be written as
n
3R opP P, ;
i S Rnclh TN Whutell B P PRPY) = (3.16)
i‘]zil[auj—*— 6‘v5+ av:Ia,,.a ir <O (r=1,...,n)

The same conditions are valid in the selfcontained case.

4. Average energy characteristics of synchronous motions. Tuming
once again to our consideration of the synchronous motions of objects with weak supported
and supporting constraints, we note that the system of equations of motion in ‘‘phase-fre-
quency’’ variables (1.12) can always be reduced to the form (2.1) merely by the nonsingular
substitution of the variables u, u°. The equations of motion of objects then remain sebstan-
tially unaltered to within terms of order .
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The equations for the generating parameters of the synchronous state can be integrated

by parts and thus reduced to
2n

17 9 (AW ® 1\ (o -
m=hmdmw+q;m‘+A*+mn—zQ(MB®M]—0um
n
I (i=1,...,n) (4.2)
fi(v) = 2n§ (aq,i Qi) dv

is the power of the nonpotential forces corresponding to the coordinates of the i-th object

averaged over a period, and the quantities
2x

3
A (a1, .0y G Voo Vi, e e v,.)=-2-55 (LP)dx
0
2‘1:
AD (G e vey Gy Vip e ey Vi) = %5 (L?)dx (4.3)
0
2r

1 v
AA(“I: oesyOny Voy V1,000 vvn) = _2;5 (AL)dT
0

are equal to the action integral of the supporting and supported constraints and to the ad-
ditional action integral of the objects [2], respectively.

Now, taking the scalar product of the equation of motion of the supporting constraints in
the generating approxim ation,

d 4 3 (& C— (4.4)
(& 5 — 7)) L + AL + Bu' =0
and the vector row u’ and then averaging the result over the period of synchronous motions,
we arrive at the following scalar identity:
2n

2AW + AA=T, TI'= E‘ES (w'B,u)dv (4.5)
V]

Here [ is the virial associated with the gyroscopic forces in the supporting system and
B, is the skew-symmetric part of the matrix B.
Making use of identity (4.5), we can write out equations for determining the generating

parameters of the problem in two equivalent forms,
2n

=1 9 A® o 1 ¢ [ p Ou _
Pi= 1y [f‘("i) g, (AT —A )~2—nS (u'B %—i)dt]_o (4.6)
0

b1 ,
Pi= oy [0 + 5 (A + 3 8A)— 2 { (G Ba)ar| =0 m
0

In contrast to the analogous terms in (4.1) and (4.6), the last term in relations (4.7) is
determined only by the energy dissipation associated with the oscillations of the supporting
system. These terms are equivalent only when there are no gyroscopic forces in the suppor-
ting system, so that [" = 0. Generally, the characteristic relation

AA+2 AW =0 (4.8)
is typical of systems with purely dissipative supporting constraints (to within terms of a
higher order of smallness). On the other hand, if small oscillations of the supporting sys-
tem are accom panied by the action of gyroscopic forces only (B, = 0), then Eqs. (4.7) be-

come . 1 ] ) 1
Py=40y [fi () + 55, (A@ +5 AA)] =0 (4.9)
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Hence, in the case where the objects are similar in the sense that

O ==k =kOLAM = SLM =0 @10
it is not difficult to arrive at a formulation of the integral stability criterion: a stable syn-
chronous state in a system with purely gyroscopic nonpotential forces along the coordinates
of the supporting constraints is associated with an extremum (a maximum for k> 0 and a
minimum for k < 0) of the quantity A(? + % AA as a function of the phase shifts @yye.., @y
We note that in the presence of gyroscopic forces other formulations of the integral stabil-
ity criterion [2] are not valid because of nonfulfillment of condition (4.8),

Finally, let us consider the energy balance equation for the system
2n

w i) =20, ©=5\ (FuBa)d (4.11)
i=1 0

which can be readily obtained by summing Eqs. (4.7). Here @ is the average value of the
dissipation function of the supporting constraints averaged over a period.

Without bothering to write out Eq. (2.20) for determining the stability coefficients A, of
the first group, we note that the conditions of representability of the second group of sta-
bility conditions in our problem reduce to the relations

b‘i = b’i (qi)' c.‘ = c,-_ (q'l) (4.12)

Here the additional kinetic potential can be written as a superposition,

n
AL = 3 AL, AL = b/ (g;)u'p;— ¢ (g)u (4.13)
i=1
The quantity AL, can be readily interpreted as the additional kinetic potential of the
i-th object occasioned by the oscillations of the supporting constraints. The small oscilla-
tions of the supporting system can be written as the sum

n
u = 2“1 (v+ a4 vo, V) (4.14)
i=1
each of whose terms represents the contribution of the corresponding objects and satisfies
Eq.
Mug" + Bu; + Cu, = — (5% — 2L (4.15)
i t i dt ow du 1 ’

We also introduce the additional kinetic potential of the i-th object occasioned by the
motion of the j-th abject in the generating approximation,

AL; =b/ (m)ujy,— ¢/ (z) u; (4.16)
and its average value over the period of synchronous motion,
2n
AAij (d'i"_ o, Vo, Vi, vj) = 'iii‘s AL{j dt (4.17)
0

In addition, the interaction of certain i-th and j-th objects by way of supporting constrai-
nts is characterized by quantities related to the dissipative and gyroscopic forces,
2n

w( 1 . .
(Dij (d‘—a:, Vo, Vi Vj) = ﬁs 7“{ Bellj dt = (Dﬂ

0
2n
Pii (g — &y, Vo, V4, vj) = %S ll"Ball," dv ='Pﬁ (4.18)
0
Clearly,
n n n
AA = 2 AAH' V@ = 2 (Du'v voI' = Z P“ (4.19)
i,3=1 f, j=1 i, joml
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The equations for determining the generating parameters of the problem now assume a
form similar to (3.12),

=>4 =0 (i=1...,n) (4.20)

i—o k; (V:)

Here
P“ == i —8— (AA,U' -+ AAji)"“ Z(Dij 7=1,. ) 1), P,,O = f‘l (V‘l) 'JF A (4 21

The matrix P = HP” | naturally breaks down into a symmetric part P, and a skew-symmet-
ric pant P,

Po= | gam B0+ AN, Po=—2] 0] (.22
The quantities R, (see (2.21)) in this case are
1 aAl )
iy = — A ‘( i) + G XS 6V ZL(PCW * FW)} (4.28)
=
Lo
© /1y
AR ( LQ,)dv (4.24)
0
In writing out the second group of stability conditions we introduce the quantities
o airl'l
b =150 (4.25)
which satisfy the orthogonality conditions (see (3.5)) with the weight k,0,),
A AT (4.26)
i=1

After certain lransformations (3.16) yields the second group of stability conditions,

dP 2A (2) 2A(2)
2{ @ [ AT AT Lo Y, <0 =t

dvo oa; dv; 0a; 0v;
ﬂ (4 (Vi)) dPy; (3&1 P " ‘f’)if> (4.28)
dvy dvi v,=v, dvo dvi d‘VJ dvg /v =v7'=v0

In the case where there are no dissipative forces in the supporting system, P, =0, a,, =
= b;,, and these conditions become
n

_dd%a%r<0 (r==1,...,n) (4.29)

i=1
Hence it follows that if all df,/dv; < 0 and k > 0 (see (3.10)), then the émtegral criterion

yields the complete system of necessary and sufficient conditions of stability of the syn-
chronous state.
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