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Synchrononm motionm of almost conservative objects with one degree of freedom intermcting 
by way of conmtrdntm of the first and second kind [d are conmidered within the framework 
of the general problem of dynamic mymtemm synchronization [I]. It is mmmumed that the de- 
mentm of the conmtrmintm of the second kind do not have degrees of fremdom of their own rrd 
that the oscillations of the conmtraintm of the first kind (i.e. of the mnpporting mymtem) ue 
accompanied by marked energ dimmipation. 

Periodic molntionm of the rotation type are found for a mymtem with a maltidimenmional 
rapidly rotating phase of mfficiantly genaal form. The necemmry and mufficiemt conditions 
for their l tability are detenuined. The representability of theme conditionm in terms of the 
average energy characteristics of the motion under mnmideration is dimcummed in relation 
to the mynchronixation problem. It is shown that one of the formalationm of the integral mta- 
bility criterion is valid in the presence of gyromcopic forcem in the mupporting mystem. 

The firmt group of l tabflity conditions for mynchronoum mtatem in mn mlmomt conmervative 
mymtem of generd form mud the resulting formdationm of the integrd criterion l re obtmined 
in [2]. A second group of stability conditionm for a nonmelfcantmined mymtem without muppolc 
ting conmtraintm is derived in [3]. However, in view of the mpplicability of the integrd l tr 
bility criterion, theme conditions are trivid for momt of the practicdly interesting problemm 
subsumed by the came oonmidered in [3]. 

1. The eqnatfonm of motfon. The motion of a mymtem of n dynamic objectm inter- 
acting by wq of weak conmtraintm of the first md second kind[2] will be demcribed b m 
met of n pairs of “chuacterimtic” [S] canonical vuimble objects qi and p, ti = l,..., n r mnd 
by the vector column z consisting of the m generalized coordinates x1,..., z,,, required to 
demczibe the conaguration of the apporting mymtem. 

The equations of motion in mynchroniradon problaum with conmtrmintm of the firmt kind 
can be conveniently conmtructmd in the form of Raumm equation& The generd Raumm kinmdc 
potentid of the mymtem can be written mm 

LR =R-II =-&+p&+p*..., I~,,=AL+L’~‘+L~~) (1.1) 
i-1 

Here p > 0 is the bamic mmall parameter of the problga characterizing the we&nemm of 
intermctionm between the objects, while the quautity 

Ht = ‘/a % ((24 Pt' + ITi (qJ (1.2) 

reprementm the “characterimtic energy” (pardd Hamiltonimu [2]) of the t-th object). The re- 
mafnfng qumnddem appeuing in (1.1) mre the following chumcterimticm of the mystan compu- 
ted to within termm of order ~2: 
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is the additional kinetic potential of the objects occasioned by small oscillations of the 
supporting system (the dot denotes differentiation with respect to time; the prime denotes 
a transposed vector, a vector row in the present instance), 

PL”’ = p (‘12 (u’)’ Mu’ - ‘/a U’CU) 

is the kinetic potential of the supporting system, aud finally 

(1.4) 

PL’*’ = p[ f$ aij(Q1, - * . 9 Qn)pipi-~(“‘(ql, . . . , q,)] 
i, i-l 

(1.51 

is the kinetic potential of the elements of the constraints of the second kind [2] (it is assu- 
med that these constraints do not have degrees of freedom of their own). 

In accordance with general notions concerning the weakness of interactions in synchroni- 
zation problems [l and 21, we consider the displacements of the supportin system to be 
small quantities of order p. The remaining symbols are those adopted in 12 . pi 

We make the following assumptions about the nonpotmtial forces corresponding to the 
generalized coordinates adopted above. We assume that the forces associated with the char- 
acteristic coordinates of the objects are small and partial, i.e. that 

Qi’ = vQ&p pi) + 4 . . . (i = I,. . . , n) (1.61 

The nonpotential forces along the coordinates of the supporting system, which (by vir- 
tue of our initial assumptions about the properties of the supporting system [2]) are propor- 
tional to the diaplacement velocities 

Q(z, z’) = - Bu'i_ p... (Q (2, 0) = 0) (1.7) 

to within terms of order ~1, are assumed to be small. 
In (1.71 the symbol B (just an M and C in (1.4)) denotes some square m x m matrix with 

constant components. 
We also assume that the inequality 

(i)’ Q (2, 2’) 6 0 (1.81 

is always fnlfilled, so that the symmetric part EC of the matrix B is associated with the 
positive quadratic form 

1,‘2 (u’)’ B, u’ > 0 (1.9) 

which can be interpreted as a dissipation function. 
Constructing the equations of motion of the system in the Ruass form, we obtain 

(i=l,...,n) 

_ aIf. 
-1=2- 

qi apt p&AL+ Lt2’)+ p2... 
1. 

Pi’ + ‘2 = p [ Qi (qi, PJ + si (AL -!- Lc2’)]+ p2. . . 

Mu~~+Bu~+Cu=-(-$&-&)AL+p... (1.101 

For p = 0 system (1.10) yields n independent conservative second-order systems descri- 
bing the motion of isolated objects without nonpotential forces. Let each of these snbsys- 
tems in some domain G of the partial phase plane (cylinder) admit of a 2n/o,-periodic lib- 
rational (rotational) so ation of the form f 

Qi = ‘i (cP$Y Oi)P Pi = Yi (‘Pi9 wi) (1.11) 

where ‘pi = @it + Ui is the characteristic rapidly rotating phase aud o, is the circular 
frequency dependent on the initial conditions. Then, converting to the new “phase-frequency” 
variables Q. o,(i = l,..., n 1 in Eqs. (1.101, we finally arrive at the following specific sys- 
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Mu”+Bu’+Cu=- &&&)AL+p... 
i 

ki (q) = ;y = O(i), hi(q) = Hi(Lq, yJ 
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(1.12) 

Here k#(o,f is the slope of the &ha1 curve of the i-th isolated object. 
The purpose of the .discnssion beIow is to obtain the conditions of existence and stab- 

ility of the synchronous solutions of system (1.12) or (which ia the same thing) of system 
(1.10) closely related to certain synchronous solutions from family (1.11). 

2. Synchronous solutions in a rystsm with multidimensional rap 
id rotations. The nonselfcontained case. Simplifying the problem somewhat, 
let us consider the interaction of substantially nonlinear almoat conservative objects des- 
cribed by the following system with a multi~m~sion~ rapidly rotating phase: 

‘pi’ = @i$_@i(Vt,. ..,CPn,Wx,...,0nrv,Yt)+I12... 

WI' =pY&.$,...,cp,,o,,...,o,,v,Yt)+p... (i=i,...,n) 

v'=Av3_F(~~,...,~~,wl,..., w,,vt)+p... (2.1) 

Here v and F are ~-~rn~~~al vectors, A is a quadratic IV x IV matrix with constant 
components, the functions .$, Yt (i = l,..., n), F etc. are assumed to be analytic in a cep 
tain domain G of the space of its arkments and 2s-periodic in each of the variables (pt,..., 
(Ps and in dimensionless time 7 = ut; v is the frequency of the external perturbation. 

In some interval 0 <cc </A~ aystem (2.1) admits of a synchronous solution of the form 

q+ = z + czi + f_t..., 01 = vi + &.. 

v = v(O) (z, a,,. * ., a,, VI, Y,, . **, v,) + p* 1. (2.2) 

which is analytic in the parameter /L. This is so provided the quantity at,..., ss forms a 
simple solution of the system 

vr = , . . =vn=v 

9% 

Pi(a,,...,a,,V,vr,...,Y,)_~S (Yi)dz=O (i=i,s..,n) (2.3) 

(Yr)=Yi(7+Ul,...,t+Odn, V~~~~~~Vfi,Vfo)~7) 

Here V(o) is a solution of Eq. 

v(O)’ = A@‘) + Fjz+al, . . ..z + a,, VI,... ,v,,, z) (2.4) 
This solution is 2s-periodic in 7. 

We sssutse here thst Eq. 

v’= Av+@(t) (2.5) 

with any sufficiently smooth 2s/+periodie fanction #ft) in its ri ht-hand side admits of a 
unique and stable 2 n/v-periodic solution v~(L) such that if max 1 % 
(t)( = O(l), 

(#)I = O(l), tben max 1% 

Turning now to the matter of the stability of the synchronous solutions determined in ac- 
cordance with (2.21, (2.3) and (2.41, let as write oat the equations in the variations of ini- 
tial system (2.1) corresponding to these solutions, 

&=P{i: [(~)8~j+(~)doi]+(~)iV}+ga... 
j=l j 
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Here and below parentheses around the derivatives indicate that these are computed for 
the generating soladon obtained from (2.2) for p- 0. Eqs. (2.6) constitute a linear system 
with 2n/+perfodic coefficients whose 2s characteristic (“critical”) indices vanish for 
p = 0. The stability of synchronous solutions (2.2) is ultimately determined by the signs of 
the real parts of the critical indices. 

Limiting ourselves for this reason to the determfnation of the critical characteristic 
indices, we exclude from apttern (2.6) the variations of the supporting system coordinates. 
To do this we attempt to ffnd them in the form 

av = i rW, CLWP, frl& NW1 (2.7) 

i-1 

where e, and v 
Substituting t 

(i =.l,..., n) are 2n/v-periodic vector functions of time 
2.7) into the latter Eq. of system (2.6) and ma&g use of expressions for 

the derivatives &+I,* and 60, ,,in accordance with its first 2s equations, we obtain a sys- 
tem of nonlhear equations for determining the functions e and 7, which is the matrix ana- 
logue of the Ricatti equation. A 2n&periodic solution o these equations can be sought I 
in the form of series in powers of a small parameter 

g, = {c(O) + C’P + IL2 1 . . .) qi=vp+pp+p... (i=i ,..., n) (2.8) 

The funaions e,(O) and q,(O)are here defined as the 2n/v-periodic solutions of Eqs. 

ei(o)’ = AtI(') + (&) , vi(o)’ = Aqi’o’ + (g) _ gi(o) 
1 

(2.9) 

Comparing (2.9) with (2.41, we have 

Et(O) = !g ) 
qi(o) = 2g + ii (2 = 1, . . . , n) 

1 I 

Here the 2n&periodic vector functions 4 satisfy the ‘Eqs. 

ii’ = A&!..$ * 

(2.10) 

(2.11) 

and are determined as follows. Converting to dimensionless time 7 in (2.4) and differentia- 
ting partially with respect to the explicitly appearing frequency V, we obtain 

&(it!&A(~)-~v(o) 
From this end from (2.11) we have 

i%(O) (z) 
6r’=Vz (i = 1, . . . , n) 

i 

(2.12) 

(2.13) 

On eliminating the variations of the supportin 
(2.7). we arrive at a system of 2n equations in 

system coordinates in accordance with 

&J t anda@,, 

8cpi’ = 8Oi + p jJ {y 8[pi + [y + (2) Fj] 8Uj} + pa. . . (2’14) 
j-1 

It is clear that the characteristic indices of system (2.14) (whose total number is 2s) are 
equal to the critical characteristic indices of system (2.6). Let us mahe the standard sub- 
stitution 

80, = eA* qi (i = I, . . . , n) 

The characteristic index (see [3] is represented in the form 
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h = ~lj.t’J~ + h@ + A&a + pa. . . (2.15) 

The problem then reduces to the determination of the conditions of existence of a ~w/u- 
periodic solution of the system 

-j,tu&+~~... Ii=%...,“) (2.16) 

The solution of system (2.16) will in turn be sought in series form, 

ai = I&@) + $” Q) + f&e?) + $1 *)i(9) + fL* . . . 

qi = $w + $‘/~lpp + pqp + $hp + p . . . 
(2.17) 

Here fElk), $,fk) Or = 0, l,...) are %n/r+perfodic functions of time. 
Beginlung the process of constructing the successive approximations, we readily obtain 

9.“) = ui, S;“’ = ci, fit)i(l)‘= bi, 1pz(l) = Alai (ai, bi = con&) (2.18) 

From thl condition of perfodicity of the second approximation we arrive at a system for 
determfning the quantities ai, 

n 3P. W & - hl’bij ) aj = 0 (i = 1, . . . ) n) 
j=l 3 

The first approximations of the characteristic indices are thus the roots of Eq. 

I api - - h,aaij = 0 
tiaj I 

(2.19) 

(2.20) 

A periodic third approximation exists if and only if the quantities b, satisfy the system 

n aP =( & - 51’6ij) bj = Al{ 2h+~i - i [? + ‘2 + 
j=l 3 j=l L aa, 3 

(i=f,...,n) 

” 
(2.21) 

The second approximations of the characteristic indices can be deter&ad from the con- 
dition of salvability of fnhomogeneon~ system (2.21) and are of the form 

Here the numbers o.*u = l..... 
1 _ . n) form the solution of the system conjugate to system 

(2.19), 

i (z-- hl’dij) Uj* = 0 
f-1 

Here we assume that all the roots of Eq. (2.20) are 
that the corresponding eigenvectore a and a* are such 

Tl 

c aiai* = 1 
i=l 

(i = 1, . . . , n) (2.23) 

simple and different from zero, and 
that the normalization condition 

(2.24) 

can be fulfflled. 
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The synchronous state in the system is asymptotically stable if 

Al2 < 0, A, < cl 

for all the roots of Eq. (2.20). 

3. The selfcontained case. Representability of the stability con- 
ditions in terms of the functions Pr, R,. Let us consider the case where there 
is no external single-frequency perturbation and system (2.1) is selfcontained. Then, clear- 
ly, the previously unknown freqnency v of the synchronous state must be sought in series 
form, 

Y = Yo + /.tLyr + ltc+... (3.11 

The synchronous solution of Eqs. (2.11 has, as before, the form (2.21, although the ex- 
plicit parameter v present in the generating approximation is replaced by vo. A precisely 
similar substitution must be made in the equations for determining the parameters of gener- 
ating solution (2.3). We note that the function Pi in this case satisfies the relations 

P, (a, + a,..., a, + a ,...) z P,(a, ,..., a, ,...) (3.2) 

where a is arbitrary. This implies that system (2.31 can generally be used to find only the 
quantity v,, and the differences between the generating phase shifts. 

Investigation of the stability of the synchronous state differs in this case only in the 
fact that relative to the first approximations of the critical characteristic indices, Eq. (2.20) 
has a double zero root. Hence, relations (2.221 enable us to determine (see (2.21)) just n - 1 
paim of second approximations of the characteristic indices corresponding to the zero roots 
of Eq. (2.201. As regards the zero roots, one of them corresponds to the exact zero charac- 
teristic index of the whole system in vsriations (2.61, while the other corresponds to the non- 
trivial index which decomposes into a series in whole powers of a small parameter. This in- 
dex can be computed most readily to within. quantities of order ,U in the following way. 

As we hnow, the sum of characteristic indices of a system of equations with periodic 
coefficients is equal to the trace of the coefficient matrix averaged over a period. 

Complting this quantity for system (2.141, we obtain 

h (I* 2, = f hl, ga + h,, p f pa’s . . . r (r=i,...,n--l) 

h(‘)=h2,CL+~2...,hn’2’=0 (3.3) 

Aere&tX are the roots o;Eq. (2.20). 
Thin imp res that the required characteristic index can be determined to within terms of i? 

order /J from the relation 

where ur and ar* 
- , 

are the eigenvectors of systems (2.19) and (2.23) normalized in accordance 
with (2.24) and corresponding to the roots &At,. We note, further, that by virtue of the or- 
thogonality and normalization conditions 

n 

2 airais * = d,, (r, s = 1,. . . . , n) (3.5) 

i=l 

the matrho A - lla,J and A+ = IIa,,*ll 
(see (2.22)) G= I,..., n 

are mutually reciprocal. Hence, the quantity 2h zr 
- 1) is the r-th diagonal element of the matrix 

A ~~+~+~fi~)ci(~,d~llA-l (3.6) 
I 3 u 
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Since the similarity transformation does not alter the trace, it follows that 
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(3.7) 

Thus, despite the fact that the expressions for the second approximations of the cherec- 
teristic indices are somewhat altered, the necessary and sufficient stability conditions re- 
main unchanged. 

Here we note that in the general case considered above investigation of stability is com- 

P 

liceted by the necessity of double integration in accordance with relations (2.13) and 
2.22). There is, however, an important special case where these integrations are easy to 

carry out. 
Let us suppose that in the non-selfcontained case the vector function F in the last Eq. 

of system (2.1) can be written es a sum, 
n 

F = 2 Fi @PC, 01, . . . , @,d (qo = vt) (3.8) 

i=o 

and that the functions Y, fi = l,.... n) are linear in the coordinates of the supporting system, 

Y1 = Y,(O) &I, . . . , ‘Pn, Ol, . . . ) co,, 3q + Y{(l) (q1, .*. , 'Pn, 01, . . . , to,, vt) v (3.9) 

The oscillations of the supporting system can then be written in the form of the super 
position 

y(O) = 
i v&O) (z + &iv v, VI, . . * , Vn) (a0 = 0) (3.10) 

i=o 

The components V*(O) can be determined from Eqs. 

vi(O)’ = _4vi(‘) + Fi (z + at, vl, . . . , v,J (3.11) 

Thus, the equations for determining the parameters of the generating solution can be 
written as 

Pi E pij + pi 
(0) = 0 (i=i,...,n) (3.12) 

j=O 

an 

P<j = Y& 1 (Yi(‘)) Vj(" dT (i = 0, s e s , n), 

?- 
Pi(O) = & ) (Yl”) dT 

(3.131 

From (2.13) in this case we have 

so that 

k 
&i(O) 

=- 
ih 

an 
1 ’ aY* 

ZT St 1 av tjdT=~ (i=i,...,n) 

0 

(3.14) 

(3.15) 

Finally, the seccmd group of stability canditions can be written es 

I 9ra*ir<0 (r = 1,. . . ) n) (3.16) 

The same ccnditions are valid in the selfcontained case. 

4. Average energy charactetiatics of synchronous motiona. Turning 
once again to our consideration of the synchronous motions of objects with weak supported 
and supporting constraints, we note thet the system of equations of motion in “phase-fre- 
quency” variables (1.12) can always be reduced to the form (2.1) merely by the nonsingnlar 
substitution of the variables U, II*. The equations of motion of objects then remain substan- 
tially unaltered to within terms of order p. 
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The equations for the generating parameters of the synchronous state can he integrated 
by parts and thus reduced to 

(4.21 

is the power of the nonpotential forces corresponding to the coordinates of the i-th object 
averaged over a period, and the quantities 

ax 

A(‘) (a1 
. 

, * - * ,a,, yo, Q, - * * , 
s 
(L"')& 

0 

2r 

A@) (al, . . . ) un, VI, . . . , Yn) = & 5 (L!"') dz 
0 

(4.31 

2n 

AA&l, . . . , a,, VO, ~1, . . ..vn) =&S (hL)dz 
0 

are equal to the action integral of the su porting and supported constraints and to the ad- 
ditional action integral of the objects [2 , respectively. f 

Now, taking the scalar product of the equation of motion of the supporting constraints in 
the generating approxim &ion, 

( d a ---- 
dt au’ 

&) (L'O + AL)+ Bn'= 0 (4.41 

and the vector row tt’and then averaging the result over the period of synchronous motions, 
we arrive at the following scalar identity: 

277 

2A"'+ AA = r, r = &I (u'B,u')dz 
0 

(4.51 

Here r is the virial associated with the gyroscopic forces in the supporting system and 
B, is the skew-symmetric part of the matrix E. 

Making use of identity (4.51, we can write out equations for determining the generating 
parameters of the problem in two equivalent forma, 

P,s-y 
4 (~0 fi (vi) + $A" - A'") -&u'.B E)&]=O (4.61 

P,s A-- 
ki(vi) [ft(vt) + &Jh@) -+ +AA)-&&$+] =o (4.71 

0 

In contrast to the analogous terms in (4.1) and (4.61, the last term in relations (4.7) is 
determined only by the energy dissipation associated with the oscillations of the supporting 
system. These terms are equivalent only when there are no gyroacopic forces in the snppor- 
ting system, ao that rr 0. Generally, the characteristic relation 

AA + 2 A@) z 0 (4.81 

is typical of systems with purely dissipative supporting constrainta (to within terma of a 
higher order of maallneu). On the other hmd, if small oscillations of the supporting sys- 
tem are accompauied by the action of gyroscopic forces only (B, = 01, then Eqs. (4.71 be- 
come 

P,s -!-- [f*(y) + & (Ac2' + + AA)] = 0 ki@d (4.9) 
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Hence, in the case where the objects are similar in the sense that 

k, (Y) = . . . - k,, (Y) E k (Y), fr (v) E . . .s f, (Y) - f (Y) (4.10) 

it is not difficult to arrive at a formulation of the integral stability criterion: a stable syn- 
chronous state in a system with purely gyroecopic nonpotential forces along the coordinates 
of the supporting constraints is associated with an extremnm (a maximum fork > 0 and a 
minimum for k < O) of the quantity A(2) + % AA as a function of the phase shifts at,..., a,,. 

We note that in the presence of gyroacopic forces other formulations of the integral stabil- 
ity criterion [2] are not valid because of nonfulfillment of condition (4.8). 

Finally, let us consider the energy balance equation for the system 

YO-jfi(vO)=2@r rn=&&i~Bci)d~ 
i=l 0 

(4.11) 

which can be readily obtained by summing Eqa. (4.7). Here @ is the average value of the 
dissipation function of the supporting constraints averaged over a period. 

Without bothering to write out Eq. (2.20) for determining the stability coefficients At of 
the first group, we note that the conditions of representability of the second group of sta- 
bility conditions in our problem reduce to the relations 

bi = bi (qt), ci = ci (&) (4.12) 

Here the additional kinetic potential can be written as a superposition, 

AL = i ALi, ALi = b,’ (%I U’Pi - Ci’ (a) u (4.13) 

i=l 

The quantity AL, can be readily interpreted es the additional kinetic potential of the 
i-th object occasioned by the oscillations of the supporting constraints. The small oscilla- 
tions of the supporting system can be written as the sum 

n 

U = 2 U{ (7 + $, yo, vt) (4.14) 
i=l 

each of whose terms represents the contribution of the corresponding objects and satisfies 

Eq* 

Mul”+Bu&Cu,=- $&&)ALi (4.15) 

We also introduce the additional kinetic potential of the i-th object occasioned by the 
motion of the j-th object in the generating approximation, 

AL*j = b,‘(~+:,) u+J~-cC('(TJU~ (4.16) 

and its average value over the period of synchronous motion, 

(4.17) 

In addition, the interaction of certain i-th and j-th objects by way of supporting constrai- 
nts is characterixed by quantities related to the dissipative and gyroscopic forces, 

?a 

@ij (“i -Ct.‘* Vu, Vt, Yj) = 2 
s 

+ u,“Bcuj’ dZ = @jt 
0 

an 

rii tat - &I, VO, V{, Vj) = $$ ’ I u(B,uf' dz = ‘I’jr 
0 

(4.18) 
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The equations for determining the generating parameters of the problem now assume a 

form similar to (3.121, 

(i = 1,. . . , n) (4.201 

Here 

PiI z- $ & (A&j $ Ahji)- 2*ij 
. 

(i = 1, . . , II), Pie = fi (pi) + ~~ (4.21) 

The matrix P =’ I(P,) I( 
ric part P,, 

naturally breaks down into a symmetric part P, and a skew-symmet- 

]‘a z /I f Ai (AAij + Ahji) I[ 7 PC = -2()cDi’\) (4.22) 

The quantities R, (see (2.2111 in this case are 

gi (vi) = -& f (g Qi) dz 

0 

(4.23) 

(4.24) 

In writing out the se.cond group of stability conditions we introduce the quantities 

bi, =: air+ 
k.i (vi) 

(4.251 

which satisfy the orthogonality conditions (see (3.511 with the weight k,(v,l, 

$J ki (vi) Uipb, - 6,s 
i=l 

(4.261 

After certain transformations (3.16) yields the second group of stability conditions, 

bi,<O (r=f,...,n)(4.n) 

(4.28) 

vi=vjzyO 

In the case where there are no dissipative forces in the supporting system, PC = 0, o,~ = 
= b,,, aud these conditions become 

(r == 1,. , n) (4.29) 

Hence it follows that if all df,/dv, < 0 and k > 0 (see (3.10)1, then thehtegral criterion 

yields the complete system of necessary and sufficient conditions of stability of the syn- 
chronous state. 
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